Adsense Indonesia
Follow Indonesiabaru on Twitter

Kamis, 19 November 2009

Geotechnic Hydrology

Pengumpulan data geoteknik dan hidrogeologi dilakukan dalam persiapan penambangan, umumnya mulai pada tahap pre-feasibility study. Data-data geoteknik dan hidrogeologi digunakan sebagai laporan di dalam tahap studi kelayakan, sekaligus sebagai dasar perancangan tambang.

A. SIFAT-SIFAT DATA TEKNIS BATUAN

Geoteknik atau dikenal sebagai engineering geology merupakan bagian dari rekayasa sipil yang didasarkan pada pengetahuan yang terkumpul selama sejarah penambangan. Seorang ahli sipil yang merancang terowongan, jalan raya, bendungan atau yang lainnya memerlukan suatu estimasi bagaimana tanah dan batuan akan merespon tegangan, sehingga dalam hal ini penyelidikan geoteknik merupakan bagian dari uji lokasi dan merupakan dasar untuk pemilihan lokasi. Bagian dari ilmu geoteknik yang berhubungan dengan respon material alami terhadap gejala deformasi disebut dengan geomekanika.

Dalam urutan kegiatan pertambangan, eksplorasi merupakan proses evaluasi teknis untuk mendapatkan model badan bijih. Model cadangan suatu badan bijih yang diinterpretasikan dari hasil eksplorasi langsung maupun tak langsung, sebelum ditentukan cara penambangannya apakah dengan open pit atau underground mining harus dianalisis secara geoteknik. Salah satu faktor yang mempengaruhi keputusan tersebut adalah ketidakselarasan struktur geologi. Pola-pola dari patahan, rekahan, dan bidang perlapisan mendominasi perilaku batuan dalam tambang terbuka karena terdapat gaya penahan yang kecil untuk mencegah terjadinya luncuran dan karena terdapat semacam gaya tekan ke atas dari permukaan air yang terdapat dalam rekahan.

Dalam tambang bawah tanah pengaruh ketidakselarasan kurang dominan namun tetap harus diperhatikan. Permukaan patahan pada kedalaman tertentu merupakan tempat yang memiliki kohesi yang rendah dan berakumulasinya tegangan. Permukaan rekahan dan belahan merupakan bidang lemah dengan resistansi yang rendah untuk menahan tegangan, dan memiliki kecenderungan terbuka saat terganggu oleh aktivitas peledakan (blasting).

Instrumentasi yang modern dalam mekanika batuan memberikan cara pengukuran yang lebih baik terhadap pengaruh kombinasi kekuatan batuan dan cacat struktur. Keuntungan khusus dari studi mekanika batuan modern adalah lokasi dan material dapat diuji lebih lanjut. Daerah kerja tambang dapat dirancang secara detail. Detail-line mapping dilakukan untuk menggambarkan proyeksi rekahan dan kontak yang orientasinya menyebar sepanjang singkapan atau suatu muka tambang. Gambar adalah lembar data tipikal yang digunakan dalam metoda ini, menunjukkan jenis informasi yang dikumpulkan. Posisi rekahan yang dihasilkan dalam detail-line mapping diplot pada stereonet untuk dievaluasi. Pendekatan lainnya untuk studi struktur detail dalam pertambangan adalah fracture-set mapping yang dalam hal ini semua rekahan diukur dan dideskripsikan dalam beberapa area tambang kemudian dikelompokkan berdasarkan karakteristik tertentu. Kelompok tersebut dideskripsikan dan posisi individualnya diplot pada Schmidt net (equal-area net).

Persentase terbesar tentang informasi struktur yang digunakan dalam perencanaan tambang berasal dari inti bor. Spasi rekahan, posisi relatif terhadap lubang bor, dan jenis pengisian rekahan harus dideskripsikan secermat mungkin. Dalam pengamatan inti bor untuk informasi struktur dikenal istilah RQD (rock-quality designation) yaitu persen inti bor yang diperoleh dan hanya dihitung untuk inti bor yang memiliki panjang 10 cm atau lebih. Klasifikasi kualitas berdasarkan RQD.

Tabel Klasifikasi kualitas batuan berdasarkan RQD (Peters, 1978)

RQD (%) Kualitas
0 - 25Sangat buruk
25 - 50
Buruk
50 - 75
Sedang
75 - 90
Baik
90 - 100Baik Sekali

Sebagai contoh :

Jika total kemajuan pemboran 130 cm, total inti bor yang diperoleh 104 cm, maka perolehan inti bor (core recovery) adalah 104/130 = 80%. Jumlah panjang inti bor dengan panjang 10 cm atau lebih adalah 71,5 cm, sehingga besarnya RQD = 71,5/130 = 55% artinya kualitas batuan yang bersangkutan adalah sedang.

Penyelidikan dengan seismik kadang-kadang digunakan untuk pengukuran secara tidak langsung terhadap “rock soundness”. Salah satu aplikasi khusus metoda seismik adalah untuk menentukan rippability yaitu suatu ukuran dimana batuan dan tanah dapat dipindahkan oleh bulldozer-ripper dan scraper tanpa peledakan.


Tabel Informasi geologi yang diperlukan untuk merekam cacat struktur dalam batuan (Peters, 1978)

INFORMASI GEOTEKNIK

1. Peta lokasi atau rencana tambang.
2. Kedalaman di bawah datum referensi.
3. Kemiringan (dip).
4. Frekuensi atau spasi antar bidang ketidakselarasan yang berdekatan.
5. Kemenerusan atau perluasan bidang ketidakselarasan.
6. Lebar atau bukaan bidang ketidakselarasan.
7. Gouge atau pengisian antar muka bidang ketidakselarasan.
8. Kekasaran permukaan dari muka bidang ketidakselarasan.
9. Waviness atau lekukan permukaan bidang ketidakselarasan.
10. Deskripsi dan sifat-sifat batuan utuh diantara bidang ketidakselarasan.
Berikut ini merupakan beberapa istilah dan pengertiannya berkaitan dengan pengujian geomekanika :
1. Tegangan (stress) adalah gaya yang bekerja tiap satuan luas permukaan. Simbolnya adalah s (baca: sigma) untuk tegangan normal dan t (baca: tau) untuk tegangan geser.
2. Regangan (strain) adalah respon yang diberikan oleh suatu material akibat dikenai tegangan. Simbolnya adalah e (baca: epsilon) yang menunjukkan deformasi (pemendekan atau pemanjangan) per satuan panjang mula-mula.
3. Kuat geser (shear strength) adalah besarnya tegangan atau beban pada saat material hancur dalam geserannya.
4. Modulus Young (E) adalah ukuran kekakuan yang merupakan suatu konstanta untuk setiap padatan yang klastik. Sering disebut modulus elastisitas yang merupakan perbandingan antara tegangan terhadap regangan (E=s/e).
5. Rasio Poisson (ν, baca: nu) berkaitan dengan besarnya regangan normal transversal terhadap regangan normal longitudinal di bawah tegangan uniaksial. Nilainya berkisar sekitar –0,2 dan persamaannya adalah :



Eεy



Eεz
ν
=
-----
atau
ν
=----


σx


σx

Terdapat beberapa jenis kekuatan batuan, yaitu :
1. Kuat kompresif tak tertekan (uniaksial) yang diuji dengan suatu silinder atau prisma terhadap titik pecahnya. Gambar menunjukkan jenis uji dan rekahan tipikal yang berkembang di atas bidang pecahnya.
2. Kuat tarik (tensile strength) ditentukan dengan uji Brazilian dimana suatu piringan ditekan sepanjang diameter atau dengan uji langsung yang meliputi tarikan sebenarnya atau bengkokan dari prisma batuan.
3. Kuat geser (shear strength) yang diuji secara langsung dalam suatu “shear box” atau diukur sebagai komponen pecahan kompresi.
Gambar Diagram penampang dari uji uniaksial pada suatu silinder batuan (Peters, 1978)
penampang uji unaxial


Gambar Diagram penampang dari uji geser kompresif triaksial
pada suatu silinder batuan (Peters, 1978)
diagram geser
Kekuatan batuan dapat diukur secara insitu (di lapangan) sebaik pengukuran di laboratorium. Regangan (deformasi) diukur di area tambang kemudian dihubungkan terhadap tegangan dengan berpedoman pada konstanta elastik dari laboratorium. Tegangan sebelum penambangan merupakan kondisi tegangan asli, sulit dihitung, tetapi merupakan parameter desain tambang yang penting.

Tegangan tersebut umumnya diperkirakan dan diberi beberapa kuantifikasi dengan memasang sekelompok pengukur tegangan elektrik dalam “rosette” pada permukaan batuan, memindahkan batuan-batuan yang berdekatan, dan mengukur respon tegangan sebenarnya yang dilepaskan. Kondisi tegangan yang berkembang selama penambangan merupakan hal penting yang harus diperhatikan dalam operasi tambang sebaik dalam perancangan tambang. Regangan yang dihasilkan dari pola tegangan baru diukur dari waktu ke waktu atau dimonitor secara menerus selama penambangan berlangsung.

Hubungan tegangan-regangan merupakan dasar dari semua pekerjaan mekanika batuan. Istilah deskriptif untuk hubungan tersebut adalah brittle versus ductile dan elastik versus plastik. Hubungan yang dihasilkan dari uji statik (fungsi waktu) ditunjukkan pada Gambar, dimana F merupakan titik pecah dalam kompresi uniaksial tak tertekan. Garis A menunjukkan material elastik sempurna dimana e=s/E. Garis B menunjukkan material plastik sempurna yang tidak akan terdeformasi sampai tegangan sama dengan s0; material tersebut tidak akan mendukung beban yang yang lebih besar daripada s0. Garis lengkung C menunjukkan suatu material elastoplastik, sementara kurva D menunjukkan material ductile sempurna dimana regangan tidak sebanding terhadap tegangan.

Gambar Diagram tegangan-regangan untuk menentukan

perilaku deformasional batuan dari empat material yang ideal (Peters, 1978)
tegangan regangan

Beberapa karakteristik kuat tekan dan kuat tarik yang telah diukur untuk beberapa jenis batuan yang umum ditunjukkan pada Tabel.

Tabel Kuat tekan uniaksial dan kuat tarik dari beberapa jenis batuan (Peters, 1978)
Jenis batuan
Kuat tekan (kg/m2)
Kuat tarik (kg/m2)
Batuan intrusif
Granit
Diorit
Gabro
Dolerit
1000-2800
1800-3000
1500-3000
2000-3500
40-250
150-300
50-300
150-350
Batuan ekstrusif
Riolit
Dasit
Andesit
Basal
Tufa vulkanik
800-1600
800-1600
400-3200
800-4200
50-600
50-90
30-80
50-110
60-300
5-45
Batuan sedimen
Batupasir
Batugamping
Dolomit
Serpih
Batubara
200-1700
300-2500
800-2500
100-1000
50-500
40-250
50-250
150-250
20-100
20-50
Batuan metamorfik
Kuarsit
Gneis
Marmer
Sabak
1500-3000
500-2500
1000-2500
1000-2000
100-300
40-200
70-200
70-200

B. SIFAT-SIFAT DATA TEKNIS TANAH DAN AIR


Tanah merupakan hasil pelapukan dari batuan. Jika suatu batuan berasal dari material yang tak terkonsolidasi, seharusnya mengikuti aturan mekanika tanah, dimana klasifikasi material ditunjukkan pada Gambar.
Gambar Klasifikasi tanah berdasarkan ukuran butir (Peters, 1978)
klasifikasi tanah


Pola perilaku tanah dan batuan dipengaruhi oleh kehadiran air dan udara; terutama air. Klasifikasi teknis yang umum untuk tanah berbutir halus melibatkan grafik plastisitas dimana batas likuid diplot berlawanan terhadap indeks plastisitas. Garis A pada grafik merupakan suatu batas empiris dengan lempung inorganik di atas dan dengan lanau dan lempung organik di bawah.

Sebagai tambahan peralatan pengujian kompresi triaksial, laboratorium pengujian tanah melibatkan konsolidometer untuk mengukur konsolidasi di bawah pembebanan, dan direct shear box. Uji kompresi tak tertekan dilakukan pada tanah kohesif. Untuk uji insitu di lapangan, vane shear test digunakan; dalam hal ini pipa dengan empat-sayap disisipkan ke dalam tanah dan diputar dengan suatu gaya ukur untuk menentukan kuat pergeseran.
Gambar Grafik plastisitas tanah menunjukkan
karakteristik beberapa jenis tanah (Peters, 1978)
plastisitas tanah
Data hidrologi sangat diperlukan untuk pengontrolan aktivitas penambangan di suatu daerah. Aliran air permukaan dapat diperkirakan dan lokasi sumber mata air dapat diplot selama pemetaan geologi. Pengukuran dapat dibuat selama program pemboran eksplorasi. Contoh kualitas air dapat diambil dan uji pemompaan sederhana dapat dilakukan sementara data geologi dikumpulkan. Masalah air memiliki dampak sosial maupun politik. Penyaliran suatu tambang dapat menyebabkan sumur seseorang atau suatu sumber aliran menjadi kering. Gambar menunjukkan beberapa hal yang berkaitan dengan air tanah. Pada semua jenis batuan terdapat variasi lokal mengenai level air, misalnya disebabkan oleh isolasi dari blok-blok tanah oleh barrier patahan yang terisi dengan suatu material dan dike impermeabel


Dua parameter pengukuran yang terpenting dalam hidrologi airtanah adalah koefisien permeabilitas dan koefisien penyimpanan, atau “porositas efektif”. Koefisien permeabilitas (k) merupakan suatu elemen dari Hukum Darcy : V = k.i, dimana V adalah kecepatan aliran laminer (kondisi nonturbulen) dan I adalah gradien hidraulik yang merupakan rasio kehilangan dalam tinggi hidraulik (tekanan) oleh resistansi friksional terhadap satuan jarak dalam arah aliran. Koefisien permeabilitas ditentukan secara eksperimen untuk daerah yang spesifik dengan uji pompa dan di laboratorium dengan uji permeameter.
Koefisien penyimpanan dalam suatu akifer ditunjukkan sebagai fraksi desimal, yang menunjukkan volume air yang dapat diharapkan untuk dikuras dari suatu satuan volume tanah. Parameter tersebut berkaitan dengan pori, rekahan, dan lubang bukaan larutan untuk pengisian oleh airtanah. Koefisien penyimpanan umumnya dihitung dari uji pompa dalam sumur observasi yang digunakan untuk memonitor perbedaan kurva penurunan atau permukaan piezometrik di sekitar sumur atau shaft, seperti yang diperlihatkan pada Gambar.
Gambar Uji drawdown dengan pemompaan dalam suatu tambang atau sumur (Peters)
uji drawdawn

Artikel Terkait



0 komentar:

Posting Komentar

manusia gda yang sempurna, jadi mohon maaf kalo ada kekurangan, jd mhon berikan komentar buat blog ini biar bisa membangun..