DENSITY LOG (LOG RAPAT MASA)
A. GAMBARAN UMUM
Awalnya penggunaan log ini dipakai dalam industri explorasi minyak sebagai alat bantu interpretasi porositas. Kemudian dalam explorasi batubara malah dikembangkan menjadi unsur utama dalam identifikasi ketebalan bahkan qualitas seam batubara. Dimana rapat masa batubara sangat khas yang hampir hanya setengah kali rapat masa batuan lain pada umumnya. Lebih extrem lagi dalam aplikasinya pada idustri batubara karena sifat fisik ini (rapat masa) hampir linier dengan kandungan abu sehingga pemakaian log ini akan memberikan gambaran khas bagi tiap daerah dengan karakteristik lingkungan pengendapannya.
Dalam operasinya logging rapat masa dilakukan dengan mengukur sinar g yang ditembakan dari sumber melewati dan dipantulkan formasi batuan kemudian direkam kembali oleh dua detector yang ditempatkan dalam satu ‘probe’ dengan jarak satu sama lain diatur sedemikan rupa.
Kedua detector ’short’ dan ‘long space’ diamankan dari pengaruh sinar g yang datang langsung dari sumber radiasi. Sehingga yang terekam oleh kedua detector hanya sinar yang telah melewati formasi saja. Dalam hal ini efek pemendaran sinar radiasi seperti ditentukan dalam efek pemendaran Compton.
Dimana menurutnya, jumlah sinar yang terpendarkan sebanding dengan jumlah electron per satuan volume. Jumlah electron dalam suatu unsur adalah equivalent dengan jumlah proton (nomor atom Z). Untuk kemudian seperti kita ketahui bahwa nomor atom adalah proporsional dengan nomor masa (A) yang untuk selanjutnya proporsional dengan rapat masa. Seperti diketahui pula bahwa secara umum perbandingan antara nomor atom (Z) terhadap nomor masa (A) selalu mendekati harga 0.5 kecuali untuk unsur hydrogen yang mendekati 1. Dari sini akan sampai pada permasalahan bagi lapisan yang banyak mengandung hydrogen seperti halnya batubara dan air yang akan menggiring pada kesalahan aparansi. Sehingga untuk memperkecil kesalahan tersebut, alat harus sering dikalibrasi dengan menggunakan aluminium yang perbandingan Z/A = 0.5.
Dalam hal formasi yang mengandung hydrogen secara menyolok sehingga nilai Z/A menjauh dari nilai 0.5, koreksi sangat diperlukan untuk mengeliminir efek tersebut (factor koreksi ini tidak diuraikan panjang lebar di sini karena hanya menyangkut pekerjaan logging engineer yang bertanggung jawab pada acurasi grafik yang dihasilkannya). Tapi secara selintas dapat disinggung sebagai berikut :
Dalam operasinya logging rapat masa dilakukan dengan mengukur sinar g yang ditembakan dari sumber melewati dan dipantulkan formasi batuan kemudian direkam kembali oleh dua detector yang ditempatkan dalam satu ‘probe’ dengan jarak satu sama lain diatur sedemikan rupa.
Kedua detector ’short’ dan ‘long space’ diamankan dari pengaruh sinar g yang datang langsung dari sumber radiasi. Sehingga yang terekam oleh kedua detector hanya sinar yang telah melewati formasi saja. Dalam hal ini efek pemendaran sinar radiasi seperti ditentukan dalam efek pemendaran Compton.
Dimana menurutnya, jumlah sinar yang terpendarkan sebanding dengan jumlah electron per satuan volume. Jumlah electron dalam suatu unsur adalah equivalent dengan jumlah proton (nomor atom Z). Untuk kemudian seperti kita ketahui bahwa nomor atom adalah proporsional dengan nomor masa (A) yang untuk selanjutnya proporsional dengan rapat masa. Seperti diketahui pula bahwa secara umum perbandingan antara nomor atom (Z) terhadap nomor masa (A) selalu mendekati harga 0.5 kecuali untuk unsur hydrogen yang mendekati 1. Dari sini akan sampai pada permasalahan bagi lapisan yang banyak mengandung hydrogen seperti halnya batubara dan air yang akan menggiring pada kesalahan aparansi. Sehingga untuk memperkecil kesalahan tersebut, alat harus sering dikalibrasi dengan menggunakan aluminium yang perbandingan Z/A = 0.5.
Dalam hal formasi yang mengandung hydrogen secara menyolok sehingga nilai Z/A menjauh dari nilai 0.5, koreksi sangat diperlukan untuk mengeliminir efek tersebut (factor koreksi ini tidak diuraikan panjang lebar di sini karena hanya menyangkut pekerjaan logging engineer yang bertanggung jawab pada acurasi grafik yang dihasilkannya). Tapi secara selintas dapat disinggung sebagai berikut :
Batubara dimana perbandingan Z/A bervariasi antara 0.51 sampai 0.54 (naik seiring dengan kenaikan kandungan hydrogen. Untuk mengilustrasikannya katakanlah batubara dengan kadar hydrogen 6%. Dalam hal ini Z/A bisa diprediksikan dengan rumus sbb :
Z/A = 0.5(1 – H) + 1 x H
Dimana H adalah kandungan hydrogen dalam decimal sehingga persamaan di atas menjadi :
= 0.5(1 – 0.06) + 1 x 0.06 = 0.53
Faktor koreksi adalah mengalikannya dengan 2.
Yang patut disimak dengan teliti adalah masalah hubungan antara kecepatan jumlah pendaran g dengan rapat masa yang lebih ruwet dan banyak ketergantungan pada hal lain :
a. Faktor ketergantungan yang utama antara lain pada jarak antara sumber radiasi dengan detector. Untuk jarak SSD yang hanya sekitar 15 cm, hubungan kecepatan jumlah (tembakan g perdetik) terhadap rapat masa menjadi linier bagi medium yang punya rapat masa berkisar antara 1 sampai 3 gram per cc. Sementara LSD yang jarak antara sumber radiasi dengan detector adalah sekitar 48 cm, hubungan kecepatan jumlah terhadap rapat masa menjadi logaritmik.
b. Kedalaman (daya tembus) radiasi dalam formasi juga dikendalikan oleh jarak antara sumber radiasi dengan detector. Untuk SSD penembusan dari sekitar 60% radiasi, hanya dapat menembus tidak lebih dalam dari 4 cm dari kulit ‘probe’ sedangkan untuk LSD dapat menembus sedalam sekitar 8 cm. Ini berarti bahwa untuk SSD akan sangat terpengaruh oleh keadaan dinding lobang sumur dibanding LSD.
c. Hal lain yang mempengaruhi adalah efek dari kolimasi sumber radiasi. Dimana dengan merapatkan sumber radiasi (yang dipasang pada ujung bawah probe) pada dinding sumur akan dapat mengeliminir degradasi oleh jega udara/air antara sumber dengan formasi, tetapi dapat menambah degradasi terhadap resolusi vertical akibat posisi probe yang menjadi tidak betul-betul pertikal dan akan mengakibatkan penurunan daya tembus radiasi g dalam formasi.
Dalam pemakaian radiasi g untuk pengukuran rapat masa ini dipakai radiasi yang memendar ke depan. Untuk memfokuskannya radiasi yang dimanfaatkan adalah yang keluar dari sumber melalui jendela yang disediakan dengan ukuran yang juga telah ditentukan. Hal ini dimaksudkan agar log hanya mengukur rapat masa medium (formasi batuan) antara sumber radiasi dengan detector.
B. KALIBRASI
b. Kedalaman (daya tembus) radiasi dalam formasi juga dikendalikan oleh jarak antara sumber radiasi dengan detector. Untuk SSD penembusan dari sekitar 60% radiasi, hanya dapat menembus tidak lebih dalam dari 4 cm dari kulit ‘probe’ sedangkan untuk LSD dapat menembus sedalam sekitar 8 cm. Ini berarti bahwa untuk SSD akan sangat terpengaruh oleh keadaan dinding lobang sumur dibanding LSD.
c. Hal lain yang mempengaruhi adalah efek dari kolimasi sumber radiasi. Dimana dengan merapatkan sumber radiasi (yang dipasang pada ujung bawah probe) pada dinding sumur akan dapat mengeliminir degradasi oleh jega udara/air antara sumber dengan formasi, tetapi dapat menambah degradasi terhadap resolusi vertical akibat posisi probe yang menjadi tidak betul-betul pertikal dan akan mengakibatkan penurunan daya tembus radiasi g dalam formasi.
Dalam pemakaian radiasi g untuk pengukuran rapat masa ini dipakai radiasi yang memendar ke depan. Untuk memfokuskannya radiasi yang dimanfaatkan adalah yang keluar dari sumber melalui jendela yang disediakan dengan ukuran yang juga telah ditentukan. Hal ini dimaksudkan agar log hanya mengukur rapat masa medium (formasi batuan) antara sumber radiasi dengan detector.
B. KALIBRASI
Dalam butir satu di atas telah disinggung bahwa persamaan untuk mencari rapat massa bergantung pada perbandingan nomor atom (Z) terhadap nomor massa (A) maasing-masing unsur yang dilewati oleh perjalanan sinar g. Untuk memperkecil kesalahan penafsiran density dari grafik yang dihasilkan, kita perlu melakukan kalibrasi alat dengan menggunakan zat yang mempunyai perbandingan Z/A mendekati 0.5 dan telah diketahui densitynya. Unsur yang biasa digunakan dalam operasional adalah aluminium yang homogen yang mempunyai nilai Z/A = 0.5
Untuk memaksimalkan efisiensi kalibrasi, ukuran kalibrator disesuaikan dengan jarak antara sumber radiasi dengan detector. Dalam hal ini standard terjauh (LSD) yang umum dipakai adalah 48 centimeter. Sehingga daya tembus efektif maksimal untuk kedua jenis pengukuran (SSD dan LSD) adalah 8 centimeter, maka balok aluminium tidak boleh kurang dari 8 centimeter tebal dan tidak kurang dari 48 centimeter panjang.
Kemudian hasil pengukuran density atas kalibrator tadi dicek terhadap density kalibrator yang sebenarnya. Kalau terjadi deviasi harga pengukuran dari nilai sebenarnya maka harus dilakukan koreksi.
Jenis koreksi mungkin jadi tanggung jawab teknisi bila kesalahan bersumber dari alat. Sedangkan koreksi dilakukan dengan cara reduksi nilai grafik, kalau deviasi diakibatkan oleh lingkungan (medium dalam sumur, jenis casing, kondisi lobang sumur dll).
KETENTUAN KERJA MENGGUNAKAN LOGGING GEOFISIKA
1. OPERASIONAL LOGGING
a. Logging unit dan personil harus siap di sekitar lobang bor setidaknya setengah jam menjelang pemboran selesai.
b. Petugas logging harus dilengkapi/memakai film badge yang sudah dikalibrasi di instansi yang terkait, atau ada dosimeter yang selalu dibawa dalam kegiatan logging (bisa cukup dosimeter saku).
c. Sumber radiasi selalu jauh dari kerumunan manusia.
d. Detektor senantiasa dikalibrasi bila geologist memandang perlu kalibrasi.
e. Saat probe menjelang dimasukan ke lobang sumur, jendela sumber radiasi senantiasa menghadap ke tempat yang tidak ada manusia
f. Walaupun pendaran radiasi sangat kecil, tetapi tidak dibenarkan meremehkan efek dari radiasi. Hal yang harus diingat bahwa bagi manusia ambang maksimal yang dibolehkan terkena radiasi hanya 5,000 miliram pertahun. Sehingga meminimalkan terkena radiasi harus diusahakan sebisa mungkin.
g. Setelah juru bor menyatakan proses pemboran selesai sesuai permintaan geologist, maka segera probe masuk ke lobang bor.
h. Peralatan bor baru boleh pindah ke lokasi berikutnya setelah probe berhasil mencapai dasar sumur atau sudah mencapai kedalaman yang diinginkan oleh geologist.
i. Log yang diperlukan adalah double gamma density, natural gamma dan kaliper.
j. Untuk LSD (quality log) dibuat scala 1 : 100 sementara untuk SSD (thickness log) dibuat scale 1 : 20 atau 1 : 25. Pembedaan scala harus didasarkan pada perbedaan kecepatan perekaman. Dimana untuk LSD sekitar 6 meter permenit sementara untuk detail scale sekitar 2 meter permenit. Atau hal ini bisa dibicarakan dengan logging engineer.
k. Setelah perekaman selesai dan ujung probe sudah sampai ke permukaan, segera sumber radiasi dimasukkan kembali ke container dan diamankan dengan jarak aman.
l. Sumber radiasi disimpan di camp jauh dari tempat manusia berada. Sebaiknya disimpan dalam lobang tanah yang digali husus sehingga mudah mengeluarkan dan menyimpan. Posisi lobang ini tetap harus jauh dari tempat orang-orang berada.
2. DESKRIPSI LOG CHART
a. Chart yang resminya, diterima geologist dari logging operator setelah dilengkapi dengan segala keperluan data dan kepala/judul dengan segala atributnya (tanggal, total kedalaman yang dibor, total kedalaman logging, jenis kalibrasi yang dilakukan, jenis parameter logging yang dilakukan).
b. Chart Quality dan Chart ketebalan sebaiknya disimpan dalam anplop yang terpisah.
c. Perhatikan chart density apakah ideal atau tidak. Bila ada kelainan, perhatikan chart kaliper, apakah kelainan disebabkan oleh kerusahan lobang bor atau kesalahan perekaman. Kalau ada kelainan akibat kesalahan perekaman segera bicarakan dengan logging engineer.
d. Kerusakan dinding lobang bor biasanya tidak mempengaruhi chart natural gamma (juga kecil pengaruhnya terhadap log LSD, kecuali ada cave/caving dengan kedalaman lebih dari 8 centimeter dari dinding normal lobang bor).
e. Deskripsi dimulai dengan penafsiran thickness log, memberi batas-batas kedalaman batas roof dan floor serta parting (kalau ada). Karena tujuan utama adalah pencarian batubara.
f. Setelah detail log selesai, baru quality log yang merekam semua batuan yang terlewati sepanjang lobang bor. Sementara pembedaan batuan didasarkan pada log natural gamma. Dimana empiris terhadap perbedaan batuan didasarkan pada asumsi kandungan unsur radioaktif dalam formasi batuan. Katakanlah batuan berukuran lempung diendapkan oleh regim aliran bawah yang akan banyak mengendapkan unsur K, sementara batuan berukuran kasar diendapkan oleh regim aliran atas yang akan lebih sedikit mengendapkan unsur K.
g. Untuk log yang baik, akan ada perbedaan bentuk antara log detail dan quality. Gunakan log SSD untuk batubara dan LSD untuk batuan lain. Tetapi kalau terpaksa harus semua dengan LSD, maka deskripsi batubara harus dilakukan empiris-empiris kedalaman. Bila hubungan antara kekuatan radiasi dengan kedalaman adalah logaritmik, maka dibuat pendekatan logaritmik. Sementara kalau hubungannya linier, penentuan batas bisa langsung berdasarkan batas density yang ditentukan (sebagai batasan density batuara adalah 1.3 gram/cc). Sebagai pegangan log SSD biasanya linier, sementara LSD adalah logaritmik (akibat perbedaan jarak sumber terhadap detector).
h. Rekonsiliasikan antara hasil deskripsi serbuk bor ataupun core terhadap chart log yang dihasilkan dari pekerjaan logging geofisika.
i. Hasil rekonsiliasi dipisahkan dari hasil deskripsi di lapangan. Tetapi tetap difilekan sebagai arsip dan akan diperlukan sewaktu-waktu.
2 komentar:
mas kenapa gak ada yang membahas mengenai log oil
seperti log caliper,log sonic ,log gamma ray,,saya pikir akan lebih menarik
just saran ,,,
geo UGM
wah,,artikelnya sangat bermanfaat terimakasih ya^^
Posting Komentar
manusia gda yang sempurna, jadi mohon maaf kalo ada kekurangan, jd mhon berikan komentar buat blog ini biar bisa membangun..